Streaming GPU Singular Value and Dynamic Mode Decompositions

نویسندگان

  • Seth D. Pendergrass
  • J. Nathan Kutz
  • Steven L. Brunton
چکیده

This work develops a parallelized algorithm to compute the dynamic mode decomposition (DMD) on a graphics processing unit using the streaming method of snapshots singular value decomposition. This allows the algorithm to operate efficiently on streaming data by avoiding redundant inner-products as new data becomes available. In addition, it is possible to leverage the native compressed format of many data streams, such as HD video and computational physics codes that are represented sparsely in the Fourier domain, to massively reduce data transfer from CPU to GPU and to enable sparse matrix multiplications. Taken together, these algorithms facilitate real-time streaming DMD on high-dimensional data streams. We demonstrate the proposed method on numerous high-dimensional data sets ranging from video background modeling to scientific computing applications, where DMD is becoming a mainstay algorithm. The computational framework is developed as an open-source library written in C++ with CUDA, and the algorithms may be generalized to include other DMD advances, such as compressed sensing DMD, multi resolution DMD, or DMD with control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RSVDPACK: An implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures

RSVDPACK is a library of functions for computing low rank approximations of matrices. The library includes functions for computing standard (partial) factorizations such as the Singular Value Decomposition (SVD), and also so called “structure preserving” factorizations such as the Interpolative Decomposition (ID) and the CUR decomposition. The ID and CUR factorizations pick subsets of the rows/...

متن کامل

Batched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression

We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based ...

متن کامل

Tensor Decompositions via Two-Mode Higher-Order SVD (HOSVD)

Tensor decompositions have rich applications in statistics and machine learning, and developing efficient, accurate algorithms for the problem has received much attention recently. Here, we present a new method built on Kruskal’s uniqueness theorem to decompose symmetric, nearly orthogonally decomposable tensors. Unlike the classical higher-order singular value decomposition which unfolds a ten...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.07875  شماره 

صفحات  -

تاریخ انتشار 2016